Maximum Likelihood Wavelet Density Estimation With Applications to Image and Shape Matching

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PREPRINT: PLEASE DO NOT DISTRIBUTE OR CITE Maximum Likelihood Wavelet Density Estimation with Applications to Image and Shape Matching

Density estimation for observational data plays an integral role in a broad spectrum of applications, e.g. statistical data analysis and information-theoretic image registration. Of late, wavelet based density estimators have gained in popularity due to their ability to approximate a large class of functions; adapting well to difficult situations such as when densities exhibit abrupt changes. T...

متن کامل

Maximum Likelihood Shape Matching

Many visual matching algorithms can be described in terms of the features and the inter-feature distance or metric. The most commonly used metric is the sum of squared differences (SSD), which is valid from a maximum likelihood perspective when the real noise distribution is Gaussian. However, we have found experimentally that the Gaussian noise distribution assumption is often invalid. This im...

متن کامل

Maximum-Likelihood Image Matching

ÐImage matching applications such as tracking and stereo commonly use the sum-of-squared-difference (SSD) measure to determine the best match. However, this measure is sensitive to outliers and is not robust to template variations. Alternative measures have also been proposed that are more robust to these issues. We improve upon these using a probabilistic formulation for image matching in term...

متن کامل

Maximum likelihood kernel density estimation

Methods for improving the basic kernel density estimator include variable locations, variable bandwidths (often called variable kernels) and variable weights. Currently these methods are implemented separately and via pilot estimation of variation functions derived from asymptotic considerations. In this paper, we propose a simple maximum likelihood procedure which allows (in its greatest gener...

متن کامل

A Maximum Likelihood Approach to Density Estimation with Semidefinite Programming

Density estimation plays an important and fundamental role in pattern recognition, machine learning, and statistics. In this article, we develop a parametric approach to univariate (or low-dimensional) density estimation based on semidefinite programming (SDP). Our density model is expressed as the product of a nonnegative polynomial and a base density such as normal distribution, exponential d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Image Processing

سال: 2008

ISSN: 1057-7149

DOI: 10.1109/tip.2008.918038